乾杰高空
烟塔、凉水塔防腐

“烟塔合一”防腐有机材料德国MC

作者:admin 来源:未知 日期:2014-1-25 9:28:22 人气: 标签:
国华三河发电厂二期扩建工程“烟塔合一”技术应用
 概述三河发电厂地处北京周边,电厂厂址位于河北省三河市燕郊,地处燕郊经济技术开发区东侧,厂址西距通州区17km、北京市区37.5km,东距三河市17km。: X3 B0 j% a/ {3 U4 v" W* s$ A- c1 K) L
电厂规划容量为1300~1400MW。一期工程已安装2台350MW凝汽式汽轮发电机组,#1、#2机组分别于1999年12月、2000年4月投产。二期工程将安装2台300MW供热机组,烟气采用脱硫、脱硝、“烟塔合一”技术,计划将于2007年10月、12月投产发电。+ T/ C0 ]: A: U* V9 J9 s
国华三河电厂扩建的二期工程为热电联产扩建工程,采用“烟塔合一”技术并将一、二期机组同步建设脱硫,达到了整个电厂“增产不增污、增产减排污”的目的。$ M- q' [3 c( o7 a0 Q#“烟塔合一”技术的优点“烟塔合一”技术是针对电力企业研制的当今世界上先进的环保技术,在城市规划和环境改善方面具有以下明显优势:一是充分利用冷却塔的巨大能量,对除尘、脱硫后的湿烟气进行有效抬升,促进净烟气中未脱除污染物的扩散,降低其落地浓度。二是由于机组不必再建设烟囱及脱硫系统的烟气再加热装置。这样不仅可缓解城市建设用地紧张和建筑物限高等问题,并且可以显著改善城市周边电厂建设同城市整体规划的适应性和灵活度,有利于缩小热源、电源与负荷中心间的距离,提高电厂的经济性并有利于城市供热、供电的可靠性。 此项技术在国外已成功实施近二十多年,技术已臻成熟。目前我国有许多电厂正在实施这种技术。
“烟塔合一”技术在三河电厂的应用    目前,河北三河电厂、天津国电津能公司和华能北京热电公司在新建机组均采用“烟塔合一”技术进行除尘、脱硝和脱硫排放,三河电厂是第一个采用国产化的“烟塔合一”技术的机组。0 K; n7 y- e+ l5 m/ Y
国华三河电厂为满足城市社会经济的快速发展,改善北京市区的大气环境质量,三河电厂二期工程(2×300MW机组)项目决定采用烟塔合一技术,主要基于以下几方面考虑:( B7 ]8 U2 @" c$ o/ q% o$ z3 R
第一;由于采用石灰石一石膏湿法脱硫系统,脱硫系统排放烟气温度只有50℃左右,若采用烟囱排放须对其进行再加热,温度达到S02的露点温度(72℃)以上。而采用冷却塔排烟则无此限制,还可节省GGH系统和烟囱初期投资及运行费用。
第二;由于该项目选址距北京顺义机场较近,采用烟塔合一技术可有效避开对航空影响。3 W6 C& y. R: S
第三;脱硫系统所用的增压风机与锅炉所用的吸风机合而为一既节省了设备的初期投资,又为整个机组的经济运行打下了良好的基础
M经测算,通过120米高的冷却塔排烟,对地面造成的SO2和PM10、NOX年均落地浓度总体好于240米高烟囱排烟对地面造成的落地浓度。工程建成后,每年可减少排放SO2 2万多吨,烟尘100多吨,具有良好的环保效益。- v; G+ V) L0 z# z4 j; G* o$ O. V
3.1工程概况/ p# \$ |& m8 f2 `1 e: T# _$ B: Q
本工程采用了烟塔合一的技术,取消了传统的烟囱,将经脱硫后的烟气通过穿过冷却塔筒壁的烟道送入塔中心,随塔内蒸发气体一同排放。利用冷却塔排烟在国外已是先进成熟的技术,但在国内刚开始应用,本工程完全立足于自主开发设计和建造的工程尚无先例。该技术主要有以下特点:
本工程排烟冷却塔技术取消了传统的高烟囱,将脱硫后的烟气通过烟道直接引入自然通风冷却水塔与水蒸气混合后,由冷却塔出口排入大气。经环评分析,尽管传统烟囱一般比双曲线冷却塔要高,烟囱排放的烟气温度也比冷却塔排出混合气体的温度要高,但冷却塔排放烟气时其热抬升高度及扩散效果是相当的。原因主要有以下两个方面:由于烟气通过冷却塔排放,烟气和冷却塔的热汽混合一起排放,具有巨大的热释放率。对于一个大型电厂来说,汽轮机的排汽通过冷却水带走的热量按热效率分摊占全厂的50%左右,而通过锅炉尾部烟气带走的热量只占5%左右,差别非常之大。这就是通过冷却塔排放烟气与通过高度较高的烟囱排放烟气的最终抬升高度与扩散效果相当的主要原因。由于烟气与冷却塔中的水气混合后,大量的水气能将烟气分散、冲淡,这种大量的混合气流有着巨大的抬升力,能使其渗入到大气的逆温层中;另一方面,这种混合气流还具有一种惯性,在升空后依然能保持紧凑的流束,使其对风的敏感度比烟囱排出的烟气对风的敏感度要低,较不易被风吹散。因此,在可比的条件下,利用冷却塔排放烟气比利用烟囱排放烟气的污染低。
由于冷却塔可以直接接受经湿法脱硫后温度较低(约为50—55℃)的烟气,这就省去了脱硫系统的烟气加热器(GGH),可以简化脱硫工艺系统和布置,取消旁路烟道,采用直通式,增压风机与引风机合二为一。加之省去了传统高烟囱的建设,这些因素,既节约了设计占地,又减少了施工工程量和施工用地,有利于施工组织。在考虑了冷却塔防腐、加固、烟道等引起的费用增加后,综合比较,采用排烟冷却塔仍然有利于节省工程投资并减少运营费用。
.2 冷却塔施工的技术问题本工程采用排烟冷却塔,需要解决的其中相应的技术及施工问题4 A9 p  v- I5 l6 R1 j+ v" Y
3.2.1冷却塔的开孔加固:由于大口径(约内径5m左右)烟道的引入,需要在冷却塔筒壁上开孔,这就要求就其对冷却塔结构稳定性的影响进行研究计算和评价。通过设计院与有关院校结合,采用大型有限元结构分析软件计算,对排烟冷却塔筒壁开孔及冷却塔结构稳定性分析,得出的结论是在冷却塔上开洞对冷却塔的结构稳定性影响不大,但局部应力的改变却比较显著,因此有必要在开洞周围进行局部加固。加固的方法是在孔洞的周围加肋,相当于对局部的塔体增加了一倍的厚度,这时候应力明显下降。为防止冷空气进入塔内,烟道穿过壳体部分用柔性材料封堵。本工程配合脱硫吸收塔后烟道的直接引入,避免玻璃钢烟道弯头的制作,减小烟道阻力,采用高位开孔方式,开孔中心标高约38m左右,在直径5m范围内要进行加固。由于开孔及其加固使得冷却塔筒壁的施工方案与常规的冷却塔施工有不同之处 ,同时也会对施工进度带来不利因素,需针对性的制定特殊施工措施。
3.2.2 冷却塔的防腐:烟气引入冷却塔,凝结的液滴回落水塔及水蒸汽在风筒壁凝结后,冷却塔的壳体、烟道支架、配水装置、淋水装置等会受到烟气污染物(烟尘、SO2、SO3、HCL、HF等)的危害。凝结的液滴含有烟气中的酸性气体,局部PH值可能达到1.0。冷却塔在长期的使用过程中由于介质冲刷,加之空气中的酸性气体如SO3、SO2以及氯离子、微生物的腐蚀作用和冻融循环,混凝土各部件如冷却塔风筒、支柱、淋水架构梁柱以及集水池等混凝土层会产生疏松、粉化、脱落,进而造成内部的钢筋裸露产生腐蚀。钢筋的锈蚀产生体积膨胀,增大了混凝土结构的空隙,加剧了腐蚀程度,导致结构的损坏。% |& B( }4 n; j5 {, N
因此,排烟冷却塔塔体、塔芯结构特殊防腐设计和防腐材料选择是排烟冷却塔技术应用的核心部分,为此我们作为重点研究进行一系列的试验项目。主要有:确定排烟冷却塔腐蚀的介质、腐蚀机理和冷却塔结构不同部位的防腐蚀设计要求;选择适应排烟冷却塔防腐要求的3~5组防腐涂料体系作为测试对象;确定防腐体系的基层、中间层和面层组合;进行各种腐蚀条件下的耐腐蚀性测试(PH=1、PH=2.5);进行防腐涂料的性能对比性测试和综合价格比较,最终确定合理的防腐技术方案。
经过试验分析,排烟冷却塔的防腐范围划分为四个区域:冷却塔风筒外壁、冷却塔风筒内壁喉部以上、冷却塔风筒内壁喉部以下、竖井及烟道支架和淋水架构部分等。确定排烟冷却塔结构不同部位的进行不同的防腐蚀技术措施。